
N91-10614

Experiences with Ada in an Embedded System

/'

Robert J. LaBaugh
Martin Marietta Astronautics Group

Space Systems

Denver, Colorado 80201 J

Introduction

This paper describes recent experiences with using Ada in a real time environment. The

application was the control system for an experimental robotic arm. The objectives of

the effort were to experiment with developing embedded applications in Ada -- evaluating

the suitability of the language for the application, and determining the performance of the

system. Additional objectives were to develop a control system based on the NASA/NBS

Standard Reference Model for Telerobot Control System Architecture (NASREM) in Ada,

and to experiment with the control laws and how to incorporate them into the NASREM

architecture.

Background

The arm to be controlled has five degrees of freedom -- one degree in each of the shoulder

and elbow joints, and a wrist with roll, pitch, and yaw. An Intel 80386 single board computer

in a Multibus II system was used for the controller. The board contained an 80387 math

coprocessor, two megabytes of RAM, and a single RS-232 serial port. The clock frequency

for the system was 16 MHz. Rather than just use the 80386 as a fast 8086, the 80386 was

operated as a 32 bit processor in the protected mode, which provides for segment sizes of

up to four gigabytes.

The Ada compiler selected was the DDC-I cross compiler for the 80386, which was hosted

on a MicroVAX. This compiler was targeted to a bare machine, so there was no operating

system to either provide services or detract from the performance of the system. The

runtime system supplied with the compiler provided _ll of the services needed to support

the features of the language, including initialization of the hardware, memory management,

R. LaBaugh
Martin Marietta
1 of 19



time management, the Ada tasking model, and interrupt handlers. An operator interface

for the application was implemented using the standard Ada Text_IO package. This package

uses the R9-232 port on the single board computer for the standard input and output of

Text_IO.

Development Approach

The software development system is shown in Figure 1. It consisted of a Rational R1000,

a MicroVAX II, and a PC clone. The systems were connected via Ethernet, which was

used to transfer files between the systems. Initial program development was done on the

Rational. To facilitate code debug and checkout on the Rational, Ada routines to simulate

the hardware were developed. These were used to replace the low level hardware interface

routines. When the target hardware and compiler became available the source code was

moved to the MicroVAX. Target peculiar modifications were made to the code, such as the

specification of task entries as interrupt handlers and the hardware interface routines. The

code was then compiled and linked on the MicroVAX, and the resulting load module was

downloaded to the PC. The PC served as the controller for the in-circuit emulator, which

was used to load and control the execution of the code in the target system.

Rational
MicroVAX

(80386 Compiler)

PC

ICE Controller

Ethernet

Robot
Control

Electronics _ 80386

Multibus II In-Circuit
80386 SBC Emulator

Figure 1. Development System

R. LaBaugh
Martin Marietta
2 of 19



Even though the capabilities of in-circuit emulators are improving, this was a less than

optimal environment for debugging code. Having to move from one terminal to another,

moving files from one system to another, and the limitations on file names on the PC all

hinder code development and checkout. The movement is clearly toward being able to

compile, download, and debug from a terminal on the host development system. There are

some systems which currently allow this, but the targets are connected to the host by an

RS-232 line. The relatively slow download speeds limit the size of programs which can be

effectively developed using these systems.

Ada Features Used

Ada tasks and task rendezvous were used for synchronization and communication between

tasks. Task priorities were established using the priority pragma. An interrupt handler

was coded in Ada to service the timer used to provide the control loop cycle. This was

accomplished using an address clause for a task entry -- which is the technique specified

in the Ada Language Reference Manual for defining interrupt handlers. The Low_Level_IO

package was used to communicate with the hardware controlling the joints on the arm.

There was one package where machine code insertions were used. This was used to provide

procedures to disable and enable interrupts. These routines were not really needed by the

initial application. They were used to assure safe initialization of the hardware, which

was already guaranteed by the sequencing of the initialization routines. However, these

routines become necessary as more Multibus II features are used. This is because some

logical operations, such as accessing a single Multibus II interconnect space register, require

accesses to multiple hardware ports.

Software Application

NASREM defines a layered, hierarchical control system with common interfaces between

layers. The lowest layer in the hierarchy operates at the highest frequency, with a decreasing

frequency of operation with each higher level. Ada tasks were used to implement the

NASREM layers, with the priority of the tasks decreasing with increasing levels in the

hierarchy. The requirement that the argument to the priority pragma be a static expression

R. LaBaugh
Martin Marietta
3 of 19



prevented the use of a generic package in defining the NASREM levels. Itowever this was a

nlinor inconvenience as there was very little code involved in defining the control structure

within a level.

The initial application concentrated on the two lowest levels of the NASREM architecture.

The servo level reads current joint positions and sends motor commands based on the

error between the current and desired position. This level was driven by a programmable

hardware clock which generated a periodic interrupt. The primitive level determines evenly

spaced points between desired end points and performs the kinematic transformations. Tile

elemental move level initially consisted of simple canned motion generators, and the task

level simply selected the motion to be performed. The robot control function and the

operator interface were both run on the same CPU, with a total of eleven Ada tasks in the

application.

The entire application was coded in Ada. No non-standard pragmas or special interface

routines to the runtime system were used. In addition, we were able to effectively write low

level code in Ada. This included interrupt handlers, hardware interface routines, Multibus

II message passing routines, and control of a DMA processor. The hardware, and the code

generated by the compiler, provided more than adequate performance for the system. In

experimenting with the control laws the control loop cycle time was varied between 10 and

50 milliseconds. For most of that range all levels of the NASREM architecture were able

to complete in a single cycle. Since the NASREM architecture is set up for approximately

a ten to one ratio in frequency of operation between levels, this leaves plenty of room for

growth.

Current activity includes splitting the robot control function from the operator interface

function and executing them on two CPUs. The initial interface and communication be-

tween tile processors is via shared memory. As an alternative, Multibus II message passing

will also be investigated. This is being done as an exercise in distributing the application.

Items of interest are the difficulty of implementing various communication schemes and the

relative performance.

R. LaBaugh
Martin Marietta
4of 19



Lessons Learned

Most of the things which could be considered lessons learned are more appropriately clas-

sified as common sense. Specifically, while being able to use a host system for initial debug

and test is a useful development tool, it does not eliminate the need for low level testing

on the target system. This testing is needed to establish the correctness of the hardware-

software interface definitions, and to build confidence in both the hardware and low level

software routines. Having a set of programs to incrementally checkout the low level functions

and interface also provides the basis for trouble-shooting as problems arise. Such routines

were needed to isolate hardware failures and identify improper system initialization, which

happened if a specific sequence was not followed for powering on the electronics racks and

computers.

Another major lesson learned was that portability is not automatic with Ada. There were

two specific instances of this. The first involved differences in the tasking implementation

between the Rational and the 80386 target. Tasks of equal priority are time sliced on the

Rational, but this is not the default for the DDC-I runtime system. A task which was to

run in the background, and which checked flags in an infinite loop, was elaborated before

some of the higher priority tasks were initiated. Since the task didn't allow for any type

of context switch, as soon as it started executing on the 80386 it kept control of the CPU,

preventing the further elaboration of the system. Inserting a delay statement inside the

loop fixed the problem. The other experience with non-portable Ada code involved a public

domain math functions library. The functions used by the application worked correctly on

the Rational. However on the 80386 system one of the functions produced erroneous results

for certain input values. It was discovered that this math package had hard coded values

for machine specific parameters. We did not try to determine if this was the cause of the

problem as an alternative math functions library was available. This does point out the

need for extensive test data, and a test mechanism, for "reusable" Ada packages.

There still seems to be a tremendous resistance to using Ada language features for embed-

ded, real-time applications. Some of this comes from "experts" who have heard Ada is not

R. LaBaugh
Martin Marietta
5 of 19



efficient enough, or just cannot support various real-time or "system" functions. This resis-

tance is probably a positive sign. It used to be said that Ada was too inefficient for ahnost

all applications, not just real-time applications. Unfortunately system specifics, such as a

particular compiler, target, or any operating system involvement, tend to be forgotten or

ignored. There are certainly systems which cannot come close to supporting time critical

applications, but this does not mean all systems are that way. Much more surprising is

the push by some Ada compiler vendors (and, less surprising, real-time kernel vendors) to

promote special, non-Ada runtime systems. This could be seen as an attempt to distinguish

their product, or provide a higher performance system where needed. However, it could

also be viewed as an attempt to circumvent shortcomings in their runtime system imple-

mentation -- which could lead to speculations of what else might be inefficient or poorly

implemented in the system. The use of such systems greatly reduces the portability of the

code and adds another complex system which has to be maintained.

Conclusions

We were able to implement a complex real time system in Ada, and did not have to resort to

circumventing Ada language features or use a special, non-Ada run time system. This was a

result of having hardware, and an Ada compiler and runtime system, with significantly more

performance than was needed by the application. Futhermore, using the Ada tasking system

allowed the initial debug and test of the code to be performed on the host development

system, which was more accessable than the target system. This also allowed the debug

and testing to begin before the target system was available. Another advantage of using Ada

tasks and having sufficient performance margin was that it allowed the application to be

implemented primarily by junior engineers. Some guidance was provided on implementing

the interrupt handler and cyclic task execution. Otherwise they were able to use textbook

tasking solutions, such as having tasks to coordinate exclusive access to resources. All of

this indicates that as Ada compilers continue to mature the idea of leveraging of skills can

be extended to the real-time arena.

R. LaBaugh
Martin Marietta
6 of 19



THE VIEWGRAPH MATERIALS

FOR THE

R. LABAUGH PRESENTATION FOLLOW





LU

u.I
t.)
Z
u.I
m

u.l

X
u.l

2
m

e_

INTENTIONAI::LYBLANK

R. LaBaugh
Martin Marietta
9 of 19



_. _ .

R. LaBaugh
Martin Marietta
10 of 19



Z

0

r_

=<

_o = s S 8 8

_g o= s

_'_. _" . • • _

R. LaBaugh
Martin Marietta
11 of 19



LL!

O9
>-
or)
l--
Z
Ill

Ii

O
_iI
1.13

Ill
CI

n-
I.LI
_.,I -.,,
._I -"
0
II

0 1-
13_ Z

0
0

Ill
0

n-
ill

X

> I_
0 0
n-- o
o

_43

0
(I3

._.1

Z
0
I'-

r'r"

l--
Ill
Z
n"
I.I.I
ZIZ
I--
I.I.I

v l--CC

50
_o_-
c¢)

u

mo0

._.1 o.)

I
O0

.o

m k- ¢v-

ILl

R. LaBaugh
Martin Marietta
12 of 19



R. LaBaugh
MartinMarietta
13of 19



R. LaBaugh
MartinMarietta
14of 19



_8 _> _o _ =_

_|
_Zl _" • s" • "'_" _

R. LaBaugh
Martin Marietta
15 of 19



R. LaBaugh
Martin Marietta
16 of 19



5
--I

0
¢af_

n_n
-I

R. LaBaugh
Martin Marietta
17 of 19



R. LaBaugh
MartinMarietta
18of 19



ILl

>,.

LU

Z
m

o
b--

,I-

o
Z

Z
m

u_

b--

u_

L_

o

R. LaBaugh
Martin Marietta
19 of 19





PANEL #4

TOOLS

D. Drew, Unisys

P. Usavage, Jr, General Electric

J. F. Buser, Software Development Concepts




